If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45n^2-10n=0
a = 45; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·45·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*45}=\frac{0}{90} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*45}=\frac{20}{90} =2/9 $
| 6x+4x-76=57-9x | | 7n-8=8=5n | | -4x-2(x+3)=8 | | 14=3-10x+4x | | 7x+5x-48=80-4x | | -3(x-4)=2(x=4)-7 | | -4x+7(1-3x)=-118 | | +5-x=5(x+2)+3 | | 4x-2(x=3) | | 15=18-4x | | 6x+2=2(-3+1) | | -4(-d-4)=-4+6(2d+6) | | 9x+3(2x-4)=18 | | (8)^x-5=512 | | 3(y+1)+2y=5(y-1)=5 | | 13x+21/7=16 | | 3(x+4)+2=8-(6-x) | | -66-6x=54 | | 3x/10-3x+4/5=3/5 | | 2(x+16)=100 | | 6x+2-x=37 | | 4x-4(2x+12)=-12 | | 5+u=4 | | 1/2(6x-4)=3x+2 | | 3x+4(-4x-6)=119 | | 3x+4(-4x6)=119 | | 3/9p=9 | | -3(x+4)=-2x+1 | | (3/10)x-3x+(4/5)=(3/5) | | 4x+8x-57=38-7 | | x-(15x-6)=107 | | 6x+3(3x+22)=216 |